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Computation of the Exponential Trap Population Integral 
of Glow Curve Theory* 

1. INTRODUCTION 

In the analysis of thermally stimulated currents (TX) it is frequently necessary 
to compute an integral 

dx) = j; e-uu-2 du = G + E,(-x). 

This arises, for example, in the evaluation of the light output of a thermo- 
luminescence (glow curve) experiment in the case of fast retrapping, or of the 
TSC of a thin specimen in which the small interelectrode spacing allows collection 
of the full released charge. 

The expression evaluated is usually given in the form [l] 

s 

T 
I = nOSe-EIkTe-SIfl e-EIkT dT, 

0 

where the lower limit of the integral is taken as zero if the starting temperature 
corresponds to a stable population of trapped carriers. The integral appearing 
in the exponent is usually integrated by parts to obtain an asymptotic series, 
either directly, or by identification with the exponential integral to which it is 
related. One [2], two [3], or four [4] terms of the asymptotic series are usually used. 
Recently Chen [5] has proposed optimal use of the asymptotic series by continuing 
it to the next smallest term and then adding one half of the smallest term. (These 
approximations are herein designated as Al, A2, A4, and AO, respectively.) 
Dussel and Bube [6] had already recognized the extremely slow convergence of 
the asymptotic series and had resorted to numerical integration for values of 
the argument, X, less than 15. The incorporation of one half of the last term in 
the A0 approximation makes a substantial improvement over the simple summa- 
tion. 

* This work was supported by the Joint Services Electronics Program (U. S. Army, U. S. Navy, 
U. S. Air Force). 
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Simple change of variable in (2) leads to the form given in (l), 

I = q,,ye-“e-SEIBk 
s 5 e-“d(u-l) 

m 

s 
m 

= nose-3ce-A e--“u? du 
r 

= n,s exp(--x - AT) 

(3) 

where 

I = stimulated particle current; 
n, = initial trapped particles; 
s = effective attempt-to-escape frequency; 
E = trap depth; 
x = E/kT; 

X = sE@k. 

2. ACCURACY REQUIREMENT 

Two points must be considered in deciding what accuracy is required: 

(1) The value of h in various applications ranges of the order of lOa to 1015, 
with 1012 typical. This is the number by which absolute error must be multiplied 
to determine errors in the calculated TSC. For this reason an absolute error of 
lo-l3 in 9 may lead to order-of-magnitude error in I. 
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FIG. 1. Absolute errors in approximations to p?(x). Long dashes, short dashes, and solid lines 
represent continued fraction, fixed-length asymptotic, and variable-length asymptotic approxima- 
tions, respectively. 
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(2) The error of the most accurate asymptotic method (A0 approximation) 
is oscillatory, having zeros located between integer values of the argument. Owing 
to the rapid fluctuation of error with argument values, the use of A0 can lead 
to distortion of the shape of TSC curves used, for example, for the testing of 
half-width and other shape-dependent analytic methods. 

A family of approximations to q~, based on the successive convergents of the 
continued fraction development of the Prym function originally due to Laplace [7], 
has been investigated for this application. 

The relative error of the first six convergents (labeled Cl, C2,..., C6) is depicted, 
together with the errors of A2, A3, A4, and A0 in Fig. 1. 

3. APPROXIMATIONS EMPLOYED AND THEIR ACCURACY 

The continued fraction employed is 

2 
y(x) = e-$x-l (A _ - 

6 - 

The first three convergents of (4) are 

c2: 

e-” 
y - x(x + 2) ’ 

e-+(x + 4) 
(JJ - x(x2 + 6x + 6) ’ 

c3: 
e-a(x2 + 10x + 18) 

TJ = x3 + 12x2 + 36x + 24 * 

(54 

(5b) 

(5c) 

Comparing Cl with the two-term asymptotic expansion most used in deriving 
analytical results 

qT m 5 (1 - *,, (6) 

we see that the expansions are of comparable complexity. Figure 1 reveals a lesser 
error of Cl throughout its range, becoming appreciably superior for small values 
of the argument. 

Where numerical evaluations, rather than analytic results, are sought, the 
C series of approximants is markedly advantageous. C3 would seem to be suffi- 
ciently accurate for most applications, even with large values of X. Where higher 
accuracy is desired, C6 yields better performance than even A0 (except at AO’s 
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isolated points of zero error), without the potential pitfalls of a rapidly changing 
error. 

For convenience in comparing proposed approximations, selected values of q~ 
and the errors of various approximations, all computed from C16, are presented 
in Table I. 

TABLE I 

Errors in Various Approximations 

VP(X) Pspprox - ‘PC16 
Calculated 

X from Cl6 A2 A4 A0 Cl c2 c3 C6 

5 1.9929380854(-4) 3.8(-S) 2.5(-5) 1.2(-6) 6.8(-6) 4.7(-7) 4.8(-S) 1.8(-10) 
10 3.8302404656(-7) 2.0(-S) 3.5(-9) 2.0(--11) 4.7(-9) 1.3(-10) 6.1(--12) 2.9(-15) 
15 1.2072091120(-9) 2.9(-11) 2.3(-12) 5.0(-16) 7.6(-12) 1.2(-13) 3.1(--15) 3.4(-19) 
20 4.7024282154(-12) 6.5(-14) 3.0(-15) 1.5(-20) 1.8(-14) 1.8(-16) 3.0(--18) l.l(-22) 
25 2X%27779065(-14) 1.9(-16) 5.5(-18) 4.8(-25) 5.3(-17) 7.6(-19) 4.3(-21) 5.8(-26) 
30 9.7655645591(-17) 6.1(-19) 1.3(-20) 1.7(-29) 1.8(-19) 8.9(-22) 8.0(-24) 4.8(-29) 

4. REMARK ON PROGRAMMING 

A note regarding the computation is in order. While the rational forms (5a) 
and (5b) are most appropriate for analytic derivations, more accurate numerical 
work using the third or higher convergent is best programmed in the continued 
fraction form (4). This situation prevails in most modern machines having division 
speeds comparable to those for multiplication. 
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